Quality Control of Photosystem II: Lipid Peroxidation Accelerates Photoinhibition under Excessive Illumination
نویسندگان
چکیده
Environmental stresses lower the efficiency of photosynthesis and sometimes cause irreversible damage to plant functions. When spinach thylakoids and Photosystem II membranes were illuminated with excessive visible light (100-1,000 µmol photons m(-1) s(-1)) for 10 min at either 20°C or 30°C, the optimum quantum yield of Photosystem II decreased as the light intensity and temperature increased. Reactive oxygen species and endogenous cationic radicals produced through a photochemical reaction at and/or near the reaction center have been implicated in the damage to the D1 protein. Here we present evidence that lipid peroxidation induced by the illumination is involved in the damage to the D1 protein and the subunits of the light-harvesting complex of Photosystem II. This is reasoned from the results that considerable lipid peroxidation occurred in the thylakoids in the light, and that lipoxygenase externally added in the dark induced inhibition of Photosystem II activity in the thylakoids, production of singlet oxygen, which was monitored by electron paramagnetic resonance spin trapping, and damage to the D1 protein, in parallel with lipid peroxidation. Modification of the subunits of the light-harvesting complex of Photosystem II by malondialdehyde as well as oxidation of the subunits was also observed. We suggest that mainly singlet oxygen formed through lipid peroxidation under light stress participates in damaging the Photosystem II subunits.
منابع مشابه
Quality Control of Photosystem II: The Mechanisms for Avoidance and Tolerance of Light and Heat Stresses are Closely Linked to Membrane Fluidity of the Thylakoids
When oxygenic photosynthetic organisms are exposed to excessive light and/or heat, Photosystem II is damaged and electron transport is blocked. In these events, reactive oxygen species, endogenous radicals and lipid peroxidation products generated by photochemical reaction and/or heat cause the damage. Regarding light stress, plants first dissipate excessive light energy captured by light-harve...
متن کاملQuality control of photosystem II: reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress.
Moderate heat stress (40 degrees C for 30 min) on spinach thylakoid membranes induced cleavage of the reaction center-binding D1 protein of photosystem II, aggregation of the D1 protein with the neighboring polypeptides D2 and CP43, and release of three extrinsic proteins, PsbO, -P, and -Q. These heat-induced events were suppressed under anaerobic conditions or by the addition of sodium ascorba...
متن کاملphotosynthetic functions of alpha- and beta-xanthophylls 1 DIFFERENT ROLES OF ALPHA- AND BETA-BRANCH XANTHOPHYLLS IN PHOTOSYSTEM ASSEMBLY AND PHOTOPROTECTION
Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosynth...
متن کاملDifferent roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection.
Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting, and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work, we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosyn...
متن کاملThe violaxanthin cycle protects plants from photooxidative damage by more than one mechanism.
When light energy absorbed by plants becomes excessive relative to the capacity of photosynthesis, the xanthophyll violaxanthin is reversibly deepoxidized to zeaxanthin (violaxanthin cycle). The protective function of this phenomenon was investigated in a mutant of Arabidopsis thaliana, npq1, that has no functional violaxanthin deepoxidase. Two major consequences of the npq1 mutation are the ab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012